首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   5篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   7篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2001年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
71.
A critical step in early cardiac morphogenesis can be faithfully duplicated in culture using a hydrated collagen substratum, and thereby serves as a useful model system for studying the molecular mechanisms of cell differentiation. Results from previous work suggested that the myocardium in the atrioventricular canal (AV) region of the developing chick heart secretes extracellular proteins into its associated basement membrane, which may function to promote an epithelial-mesenchymal transition of endothelium to form prevalvular fibroblasts (E. L. Krug, R. B. Runyan, and R. R. Markwald, 1985, Dev. Biol. 112, 414-426; C. H. Mjaatvedt, R. C. Lepera, and R. R. Markwald, 1987, Dev. Biol., in press). In the present study we show that an EDTA-soluble extract of embryonic chick hearts can substitute for the presence of myocardium, the presumptive stimulator tissue, in initiating mesenchyme formation from AV endothelium in culture. Ventricular endothelium was unresponsive to this material in keeping with observed in situ behavior. AV endothelial cells did not survive beyond 4-5 days when cultured in the absence of either the EDTA-soluble heart extract, myocardial conditioned medium, or the myocardium itself. Antibody prepared against a particulate fraction of the EDTA-solubilized heart extract immunohistochemically localized this material to the myocardial basement membrane. In addition, conditioned medium from embryonic myocardial cultures effectively induced mesenchyme formation. Neither a variety of growth factors nor a sarcoma basement membrane preparation were effective in promoting mesenchyme formation indicating a selectivity of the responding embryonic AV endothelial cells to myocardial basement membrane. These observations reflect a truly inductive phenomenon as there was an absolute dependence on the presence of the stimulating substance/tissue and retention, in culture, of both the temporal and regional characteristics observed in situ. This is in contrast to the results of others investigating the cytodifferentiation of committed cells whose phenotypic expression can be either accelerated or diminished but not obligatorily regulated by a specific agent, thus making the interpretation of data difficult, if not irrelevant, to the study of differentiation. The results of this study provide direct experimental support for the hypothesis that extracellular matrix can indeed serve as a direct stimulator or "secondary inducer" of cytodifferentiation.  相似文献   
72.
The early chick heart tube consists of myocardium and endothelium separated by a myocardially derived basement membrane (MBM). As development proceeds, the endothelium undergoes a transition into mesenchyme in a regionally specific manner; only the atrioventricular (AV) and outflow tract, but not the ventricular endothelium, is transformed into mesenchyme, the progenitor of heart septa and valves. Recent experiments have shown that an EDTA extract of MBM can initiate AV endothelium to form mesenchyme in an in vitro collagen gel culture system. Two-dimensional gel electrophoresis of AV region EDTA extracts showed potentially three isoelectric forms of fibronectin (Fn), while extracts from ventricle contained only two forms. The purpose of the present study was to further investigate the significance of these regional differences by testing of specific myocardial regions (AV vs ventricle) for their ability to induce endothelium to form mesenchyme in vitro, and to immunohistochemically determine if a regionally specific distribution of Fn exists in the MBM that can be correlated with previous electrophoretic data. Embryonic heart regions cultured on three-dimensional collagen gels showed that AV endothelium could only form mesenchyme if cocultured with AV myocardium. Coculture with ventricular myocardial explants did not initiate differentiation of AV endothelium. In contrast, ventricular endothelial cells did not form mesenchyme when cocultured with AV or ventricle myocardium. Immunohistochemical localization of Fn revealed three distinct morphological patterns of distribution in the AV-MBM, i.e., an intense lamina densa staining, diffuse staining in fibrils, and as particles. The Fn localized in particles (0.1 to 0.5 micron in diameter) appeared as a gradient of decreasing concentration extending from the myocardium toward the endothelium. In contrast, no particulate Fn staining was observed in the ventricular region. EDTA extraction selectively depleted the particulate form of Fn. Previous work has shown that this extract, which contains several lower Mr proteins in addition to Fn, is biologically active in initiating mesenchyme formation from AV endothelium in vitro. These results show that a regionally specific interaction of the myocardium with the endothelium is required to initiate the formation of prevalvular mesenchyme. This interaction may be mediated by a multicomponent complex involving Fn and other proteins which appear as a regionally distinct particulate only in areas of endothelial differentiation.  相似文献   
73.
Organ printing: computer-aided jet-based 3D tissue engineering   总被引:24,自引:0,他引:24  
Tissue engineering technology promises to solve the organ transplantation crisis. However, assembly of vascularized 3D soft organs remains a big challenge. Organ printing, which we define as computer-aided, jet-based 3D tissue-engineering of living human organs, offers a possible solution. Organ printing involves three sequential steps: pre-processing or development of "blueprints" for organs; processing or actual organ printing; and postprocessing or organ conditioning and accelerated organ maturation. A cell printer that can print gels, single cells and cell aggregates has been developed. Layer-by-layer sequentially placed and solidified thin layers of a thermo-reversible gel could serve as "printing paper". Combination of an engineering approach with the developmental biology concept of embryonic tissue fluidity enables the creation of a new rapid prototyping 3D organ printing technology, which will dramatically accelerate and optimize tissue and organ assembly.  相似文献   
74.
We previously demonstrated that the initial emergence of endocardial precursor cells (endocardial angioblasts) occurred within the precardiac mesoderm and that the endodermal secretory products promoted delamination of cells from the precardiac mesoderm and expression of endothelial lineage markers [Dev. Biol. 175 (1996), 66]. In this study, we sought to extend our original study to the identification of candidate molecules derived from the endoderm that might have induced endocardial precursor cell formation. We have detected expression of transforming growth factors beta (TGFbeta) 2, 3, and 4 in anterior endoderm at Hamburger and Hamilton (H-H) stage 5 by RT-PCR. To address the role of growth factors known to be present in the endoderm, precardiac mesodermal explants were isolated from H-H stage 5 quail embryos and cultured on the surface of collagen gels with serum-free defined medium 199. Similar to the effect of explants cocultured with anterior endoderm, when cultured with TGFbetas 1-3 (3 ng/ml each), explants formed QH-1 (anti-quail endothelial marker)-positive mesenchymal cells, which invaded the gel and expressed the extracellular marker, cytotactin (tenascin). Another member of the TGFbeta superfamily, bone morphogenetic protein-2 (BMP-2; 100 ng/ml), did not induce QH-1-positive mesenchymal cell formation but promoted formation of an epithelial monolayer on the surface of the collagen gel; this monolayer did not express QH-1. Explants treated with vascular endothelial growth factor (VEGF(165), 100 ng/ml) also did not invade the gel but formed an epithelial-like outgrowth on the surface of the gel. However, this monolayer did express the QH-1 marker. Fibroblast growth factor-2 (FGF-2; 250 ng/ml)-treated explants expressed QH-1 and exhibited separation of the cells on the surface of the gel. Finally, a combination of TGFbetas and VEGF enhanced formation of QH-1-positive cord-like structures within the gel from mesenchyme that had previously invaded the gel. Luminization of the cords, however, was not clearly evident. These findings suggest that TGFbetas, among the growth factors tested, mediate the initial step of endocardial formation, i.e., delamination of endothelial precursor cells from precardiac mesoderm, whereas VEGF may primarily effect early vasculogenesis (cord-like structure formation).  相似文献   
75.
76.
Periostin is a member of a growing family of matricellular proteins, defined by their ability to interact with components of the extracellular milieu, and with receptors at the cell surface. Through these interactions, periostin has been shown to play a crucial role as a profibrogenic molecule during tissue morphogenesis. Tissues destined to become fibrous structures are dependent on cooperative interactions between periostin and its binding partners, whereas in its absence, these structures either totally or partially fail to become mature fibrous entities. Within the heart, fibrogenic differentiation is required for normal tissue maturation, remodeling and function, as well as in response to a pathological myocardial insult. In this review, aspects related to the function of periostin during cardiac morphogenesis, remodeling and pathology are summarized.  相似文献   
77.
Molecular evolution of olfactomedin   总被引:2,自引:0,他引:2  
Olfactomedin is a secreted polymeric glycoprotein of unknown function, originally discovered at the mucociliary surface of the amphibian olfactory neuroepithelium and subsequently found throughout the mammalian brain. As a first step toward elucidating the function of olfactomedin, its phylogenetic history was examined to identify conserved structural motifs. Such conserved motifs may have functional significance and provide targets for future mutagenesis studies aimed at establishing the function of this protein. Previous studies revealed 33% amino acid sequence identity between rat and frog olfactomedins in their carboxyl terminal segments. Further analysis, however, reveals more extensive homologies throughout the molecule. Despite significant sequence divergence, cysteines essential for homopolymer formation such as the CXC motif near the amino terminus are conserved, as is the characteristic glycosylation pattern, suggesting that these posttranslational modifications are essential for function. Furthermore, evolutionary analysis of a region of 53 amino acids of fish, frog, rat, mouse, and human olfactomedins indicates that an ancestral olfactomedin gene arose before the evolution of terrestrial vertebrates and evolved independently in teleost, amphibian, and mammalian lineages. Indeed, a distant olfactomedin homolog was identified in Caenorhabditis elegans. Although the amino acid sequence of this invertebrate protein is longer and highly divergent compared with its vertebrate homologs, the protein from C. elegans shows remarkable similarities in terms of conserved motifs and posttranslational modification sites. Six universally conserved motifs were identified, and five of these are clustered in the carboxyl terminal half of the protein. Sequence comparisons indicate that evolution of the N-terminal half of the molecule involved extensive insertions and deletions; the C-terminal segment evolved mostly through point mutations, at least during vertebrate evolution. The widespread occurrence of olfactomedin among vertebrates and invertebrates underscores the notion that this protein has a function of universal importance. Furthermore, extensive modification of its N-terminal half and the acquisition of a C-terminal SDEL endoplasmic-reticulum- targeting sequence may have enabled olfactomedin to adopt new functions in the mammalian central nervous system.   相似文献   
78.
79.
In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system.  相似文献   
80.
Confocal laser scanning microscopy represents a suitable technique to study the localization of cellular components in three dimension. The authors used this technique to analyse cellular events related to mechanical stimulation of integrin receptors on the cell surface. By performing optical sections the distribution of integrin receptors on the apical surface of an osteoblastic cell was determined. Concerning intracellular compartimentalization of signal transduction events, it was demonstrated that mechanical stimulation of integrins induced their linkage to the cytoskeleton. Cytoskeletally associated proteins like vinculin and talin accumulated in the vicinity of the site where the mechanical stress was applied to integrins on the cell surface. Optical sections revealed that clustering of these proteins proceeded to the base of the cell with gradually decreasing extent. In summary, it was demonstrated that the local distribution of cellular components is an important factor in mechanically induced signal transduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号